Pensamiento de diseño en los planes de estudios de educación STEAM: desarrollo y evaluación de la eficacia
DOI:
https://doi.org/10.46502/issn.1856-7576/2025.19.03.12Palabras clave:
habilidades analíticas, creatividad, pensamiento de diseño, desarrollo de habilidades, educación STEAM, carrera STEMResumen
El enfoque del pensamiento de diseño constituye una herramienta clave para fomentar la creatividad, el pensamiento crítico y las habilidades sociales. Este estudio tiene como objetivo analizar el impacto de la integración del pensamiento de diseño en los planes de estudio STEAM sobre el desarrollo del pensamiento creativo, la capacidad de resolución de problemas y el rendimiento académico general. Se adoptó un diseño cuasi experimental con 52 participantes, distribuidos en dos grupos: experimental (n=26) y de control (n=26). La investigación se desarrolló en varias fases. En primer lugar, se diseñó un programa adaptado, con materiales didácticos y herramientas de evaluación. Posteriormente, se aplicaron pruebas pre y post utilizando las escalas TTCT y WGCTA. También se administró un cuestionario para explorar la percepción de los estudiantes sobre el pensamiento de diseño. Los resultados indicaron mejoras significativas en creatividad (TTCT: +7,2 frente a +1,1), pensamiento analítico (WGCTA: +2,3 frente a +0,5) y motivación hacia las disciplinas STEAM (+1,3 frente a +0,4) en el grupo experimental. Asimismo, se identificó el potencial del pensamiento de diseño como herramienta de orientación vocacional, al favorecer una autodeterminación profesional más consciente en áreas como ciencia, tecnología e ingeniería. Este enfoque destaca por su capacidad para abordar problemas reales y complejos de manera efectiva.
Citas
Aswan, D. M., Aina, M., & Natalia, D. (2024). The effectiveness of Project-Based Learning to improve critical thinking skills. Journal of Science Education Research, 10(12), 10316–10320. https://doi.org/10.29303/jppipa.v10i12.6410
Avendano-Uribe, B. E., Lombana-Bermudez, A., Flórez, L. V., Chaparro, E., Hernandez-Morales, A. C., Archbold, J., Buitrago-Casas, J. C., & Porras, A. M. (2022). Engaging Scientific Diasporas in STEAM Education: The Case of Science Clubs Colombia. Frontiers in Research Metrics and Analytics, 7. https://doi.org/10.3389/frma.2022.898167
Bachynskyi, O.-S. (2024). Mechanism for the Formation and Implementation of HR Policy: The Global Experience. Futurity of Social Sciences, 2(2), 62–78. https://doi.org/10.57125/FS.2024.06.20.04
Bascopé, M., Reiss, K., Morales, M., Robles, C., Reyes, P., Ismael Duque, M., & Andrade, J. C. (2020). Latin American STEM Policy. In Handbook of Research on STEM Education (pp. 443–458). Routledge. https://doi.org/10.4324/9780429021381-41
Boakes, N. J. (2020). Cultivating design thinking of middle school girls through an origami STEAM project. Journal for STEM Education Research, 3, 259–278. https://doi.org/10.1007/s41979-019-00025-8
Conradty, C., & Bogner, F. X. (2020). STEAM teaching professional development works: effects on students’ creativity and motivation. Smart Learning Environments, 7(1). https://doi.org/10.1186/s40561-020-00132-9
Cook, K. L., & Bush, S. B. (2018). Design thinking in integrated STEAM learning: Surveying the landscape and exploring exemplars in elementary grades. School Science and Mathematics, 118(3-4), 93–103. https://doi.org/10.1111/ssm.12268
Culén, A. L., & Gasparini, A. A. (2019). STEAM education: Why learn design thinking? In Promoting Language and STEAM as Human Rights in Education (pp. 91–108). Springer Singapore. https://doi.org/10.1007/978-981-13-2880-0_6
Czyż, A., & Svyrydenko, D. (2019). Science Education as a Response to the Needs of the Modern Open “Education for Everyone” System. Future Human Image, 11, 14–21. https://doi.org/10.29202/fhi/11/2
Gavari-Starkie, E., Espinosa-Gutiérrez, P.-T., Lucini-Baquero, C., & Pastrana-Huguet, J. (2024). Importance of STEM and STEAM Education for Improvement of the Land in the RURAL Environment: Examples in Latin America. Land, 13(3), 274. https://doi.org/10.3390/land13030274
Gerardou, F. S., Meriton, R., Brown, A., Moran, B. V. G., & Bhandal, R. (2022). Advancing a design thinking approach to challenge-based learning. In The emerald handbook of challenge based learning (pp. 93–129). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80117-490-920221005
Gevorgyan, S. (2024). The Use of Adaptive Learning Technologies in e-Learning for Inclusive Education: A Systematic Review. E-Learning Innovations Journal, 2(1), 90–107. https://doi.org/10.57125/ELIJ.2024.03.25.05
Graham, M. A. (2020). Deconstructing the Bright Future of STEAM and Design Thinking. Art Education, 73(3), 6–12. https://doi.org/10.1080/00043125.2020.1717820
Henriksen, D., Mehta, R., & Mehta, S. (2019). Design Thinking Gives STEAM to Teaching: A Framework That Breaks Disciplinary Boundaries. In STEAM Education (pp. 57–78). Springer International Publishing. https://doi.org/10.1007/978-3-030-04003-1_4
Khan, S. A., Nadim, M. A., & Poletti, G. (2025). Towards a new paradigm of steam in primary education as a 21st century skill. In 19th international technology, education and development conference (pp. 750–758). IATED. https://doi.org/10.21125/inted.2025.0283
Kijima, R., Yang-Yoshihara, M., & Maekawa, M. S. (2021). Using design thinking to cultivate the next generation of female STEAM thinkers. International Journal of STEM Education, 8(1). https://doi.org/10.1186/s40594-021-00271-6
Kudria, O., Skovronskyi, B., Marushchak, O., Honcharova, N., & Sipii, V. (2024). The role of innovative techniques in development of stem-education in Ukraine. Academia, 35-36, 132–155. https://pasithee.library.upatras.gr/academia/article/view/5006
Leavy, A., Dick, L., Meletiou-Mavrotheris, M., Paparistodemou, E., & Stylianou, E. (2023). The prevalence and use of emerging technologies in STEAM education: A systematic review of the literature. Journal of Computer Assisted Learning, 39(4), 1061–1082. https://doi.org/10.1111/jcal.12806
Liao, C. (2019). Creating a STEAM map: A content analysis of visual art practices in STEAM education. In STEAM Education (pp. 37–55). Springer International Publishing. https://doi.org/10.1007/978-3-030-04003-1_3
Malele, V., & Ramaboka, M. E. (2020). The Design Thinking Approach to students STEAM projects. Procedia CIRP, 91, 230–236. https://doi.org/10.1016/j.procir.2020.03.100
Meadows, C. J. (2024). What to learn and how, for this new age. In Disrupting and Design Thinking Education (pp. 41–57). Routledge. https://doi.org/10.4324/9781003340713-4
Nedermeijer, J. (2023). Design Thinking. In Evidence-Based Blended and Online Learning (pp. 280–283). BRILL. https://doi.org/10.1163/9789004681774_020
Nikolenko, K., Poperechna, G., Diatlova, I., Kvitkin, P., & Hrytsenko, A. (2024). Philosophical and psychological foundations of social responsibility and ethics. Futurity Philosophy, 3(3), 95–113. https://doi.org/10.57125/fp.2024.09.30.06
Panergayo, A. A. E., & Prudente, M. S. (2024). Effectiveness of design-based learning in enhancing scientific creativity in STEM education: A meta-analysis. International Journal of Education in Mathematics Science and Technology, 12(5), 1182–1196. https://doi.org/10.46328/ijemst.4306
Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31–43. https://doi.org/10.1016/j.tsc.2018.10.002
Pratiwi, A. N., Aisyah, N., Somakim, S., & Kamran, M. (2023). STEM-based approach: A learning design to improve critical thinking skills. Al-Jabar Journal of Mathematics Education, 14(1), 225–237. https://doi.org/10.24042/ajpm.v14i1.18054
Preston, J. (2024). Design thinking. In Owning Your Project-Based Learning (pp. 97–114). Routledge. https://doi.org/10.4324/9781003431848-9
Ozkan, G., & Umdu Topsakal, U. (2021). Exploring the effectiveness of STEAM design processes on middle school students’ creativity. International Journal of Technology and Design Education, 31(1), 95–116. https://doi.org/10.1007/s10798-019-09547-z
Seitenova, S., Khassanova, I., Khabiyeva, D., Kazetova, A., Madenova, L., & Yerbolat, B. (2023). The effect of STEM practices on teaching speaking skills in language lessons. International Journal of Education in Mathematics Science and Technology, 11(2), 388–406. https://doi.org/10.46328/ijemst.3060
Soto, P., López, V., Bravo, P., Urbina, C., Báez, T., Acum, F., Ipinza, R., Venegas, J., Jeldes, J. C., González, C., Lepe, S., & González, J. (2024). Towards a gendered STEAM education approach: building a comprehensive model to strengthen girls’ and students with non-conforming gender identities’ STEAM trajectories in Chilean public schools. London Review of Education, 22(1). https://doi.org/10.14324/lre.22.1.06
Tsakeni, M. (2024). Exploring design principles for STEAM learning activities development by science and technology teachers. Educational Research for Social Change, 13(1), 85–106. https://doi.org/10.17159/2221-4070/2024/v13i1a6
Unterfrauner, E., Addis, A., Fabian, C. M., & Yeomans, L. (2024). STEAM education: The claim for socially innovative practices. Creativity and Educational Innovation Review, 8, 71–98. https://doi.org/10.7203/creativity.8.29743
Wilson, H. E., Song, H., Johnson, J., Presley, L., & Olson, K. (2021). Effects of transdisciplinary STEAM lessons on student critical and creative thinking. The Journal of Educational Research, 114(5), 445–457. https://doi.org/10.1080/00220671.2021.1975090
Yüksel, A. O. (2025). Design-based STEM activities in teacher education and its effect on pre-service science teachers’ design thinking skills. Journal of Science Education and Technology, 34, 904–918. https://doi.org/10.1007/s10956-025-10215-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Bohdan Skovronskyi, Volodymyr Sipii, Oleh Morin, Zorina Ohrimenko, Viktoriia Khrenova

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.